Constructive Nonlinear Control of Underactuated Systems
via Zero Dynamics Policies

IEEE Conference on Decision and Control
Thursday 19" December, 2024

William D. Compton, Ivan D.J. Rodriguez, Noel Csomay-Shanklin,
Yisong Yue, Aaron D. Ames

Caltech  ave==bne il sosee




Definition: Underactuated
A system is underactuated if it has fewer actuators than degrees of freedom.

Actuated: x, & Actuated: q, w Actuated: q, q

Unactuated: 979' Unactuated: z,y, ,vy Unactuated: X.om, Xcom
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Pendulum: y =6 Cartpole: y =z Cartpole: y =6
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Can we constructively synthesize outputs y = h(x), such that stabilizing the
outputs results in stability of the full system state?
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Definition: Actuation Decomposition (Normal Transform)
Given a system with state x € R™, input v € R, and output y € R of relative
degree -,

x = fy(x) + gx(x)v
y = h(x)
there exists a diffeomorphism ® : R” — RY x R"™7 mapping x — (1,z), and a

feedback linearizing input v = k#p(x,u) such that the new coordinate system
has dynamics:

o = N2
T . n=Fn+ Gu
n=|.: . . z = w(n,z)
|y | %_.1 — Yy =m
Ty = U

Exposes which states have direct actuation authority (n) and which do not (z).
For robotic systems, we can always choose y to be actuated joints.



Actuation Decomposition Example: Cartpole 0

Define Output Coordinates U =
[ >
y=2x
- { /=
y=4 Normal Coordinates Complete Diffeomorphism
i = a(i,0,0) + b(i, 0, 0)v n= %
_I'

i v
‘= myl(160 + g cos 9)]

Feedback Linearizing Controller

b(i:,19, ) (—a(a’:, 0,0) + u)

j = u

Actuation Decomposition
n=Fn+ Gu
z=w(n,z)

v =



Proposed Output Structure and Zero Dynamics

v:Z >N

nq = Y (2)

1) maps underactuated coordinate to a desired actuated state, 1 .
Lemma 2. If My, s controlled

What is the structure of the points where n = n,;”
h(n,z) =n—v(z) =0
My = {n,2 | h(n,z) = 0}

Zeroing Manifold:
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Zero Dynamics:

invariant, then My, is the zero-
ing manifold associated with the

output y = 11 — ¥1(2).
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Theorem 1: Composite Stability

If the zero dynamics z = w((z), z) are stable, then
stabilizing the manifold M., by driving h(n,z) — 0
results in stability of the entire system, i.e. x — O.

Desirable Properties of My,
1. Able to be rendered attractive.

True as long as it is controlled invariant by
Lemma 2 (benefit of actuation structure).

2. Stable autonomous dynamics.
Completely determined by choice of ).
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Question: When does a manifold with these desirable properties exist?

Always. (around equilibria, for controllable systems).
In fact, we can construct them from the linearization.
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(Nominal Dynamics)
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1. Linearize

2. Control Linearization

3. Identify S

4. Stabilize M for NL dyn.
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(Nominal Dynamics)
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2. Control Linearization

3. Identify S

4. Stabilize M for NL dyn.
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Controllable by assumption = LQR, Pole Placement

11



(Nominal Dynamics)
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4. Stabilize M for NL dyn.

Lemma 3. There exists a nonempty set of controllers
which stabilize the linearized system and induce an n, di-
mensional invariant subspace S such that for each z there

exists a unique 1 such that (n,z) € S.



(Nominal Dynamics)
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VU LT . T . . . . . .
4. Stabilize M for NL dyn. M = Sy, 2 obtained via lmea,m;atzon and Lemmaé’ha,’s valid
relative degree and exponentially stable zero dynamics for

the nonlinear system. As such, stabilizing e — 0 results in
stability of the entire system to the origin.



(Nominal Dynamics)
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4. Stabilize M for NI dyn.
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Theorem 2: Stabilizing Output Construction

Given a nonlinear system, the output y = 13 — S;_l z, obtained
via linearization and Lemma 3, has valid relative degree and
exponentially stable zero dynamics for the nonlinear system.
As such, zeroing the output results in stability of the entire

system.

Proof Approach:

o Yy =1 — s; z has valid relative degree ~ for the linear
system.

e Driving y — 0 drives the system to (n,z) — S.

e Close to the origin, both the relative degree property
and stability of the Zero Dynamics can be transfered to
the nonlinear system by bounding the deviation of the
dynamics from the linear system.
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Using learning to extend the region of validity of Zero Dynamics Policies

Parameterize the ZDP as a neural network, 14(z).
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Training: Optimize @ such that Mg is invariant under stabilizing trajectories.

FQ) + 80— 22w(@Q) ¢ = (o(a).2)

L) =F,.,
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We have developed constructive methods for synthesizing stablizing outputs for
underactuated systems.

Leverage linearization of the system about equilbrium (and linear control) for
local synthesis (and proof of existence).

Learning problem which leverages optimal control to find manifolds Mg with
desirable properties.
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Region of Attraction for (Unstable) Cartpole
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LQR vs. ZDP Response Comparison
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LQR Failure - ZDP Successful
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